统计热力学与热力学的区别:
![]()
graph LR A[微观统计系统] --> B[玻尔兹曼系统] --> C[不考虑简并度] B --> D[考虑简并度] A --> E[玻色系统] A --> F[费米系统]
玻尔兹曼定位系统
一种宏观状态下有多种分配方式,不考虑简并度时每种分配方式的微观状态数为 $$ t = \frac{N!}{n_1!n_2!\dots n_i!} = \frac{N!}{\prod_in_i!} $$
玻尔兹曼假定
玻尔兹曼提出了热力学中的熵与体系总微观状态数之间的关系假定,从而建立了统计力学。 $$ S = k \ln \Omega $$ 其中$\Omega$是体系的总的微观状态数。 $$ \Omega = \sum_i t_i $$ 即 $$ \ln \Omega = \ln \sum_i t_i $$ 而在所有的分布中存在一种微观状态数最多的最概然分布 $$ t_m = \max(t_i) $$ 显然最概然分布微观状态数与总微观状态数存在以下不等式 $$ \begin{aligned} t_m &< \sum_i t_i < n t_m \\ t_m &< \Omega < nt_m \\ \ln t_m &< \ln \Omega < \ln t_m + \ln n \end{aligned} $$ 当总粒子数目$N$非常大时,微观状态数是指数级别的增长速率,$t_m \gg n$ $$ \ln t_m < \ln \Omega < \ln t_m + \ln n \approx \ln t_m $$ 则 $$ \ln \Omega = \ln t_m $$
玻尔兹曼统计
在不考虑简并度的玻尔兹曼系统一个分配方式的微观状态数为 $$ t_i = \frac{N!}{\prod_i n_i!} $$ 取自然对数可得 $$ \ln t_i = \ln \left(\frac{N!}{\prod_i n_i!} \right) $$ 寻找最概然分布就是寻找$t$的极大值,这属于多元函数条件极值问题 $$ \ln t_i= f(n_1,n_2,…,n_i) \\ \begin{cases} \sum n_i = N \\ \sum \varepsilon_i n_i = U \end{cases} $$
拉格朗日乘数法是常见的求多元函数条件极值的方法。
若目标函数为 $$ f(x_1,x_2,…,x_n) $$ 限制条件为 $$ \begin{cases} g_1(x_1,x_2,…,x_n) = 0 \\ … \\ g_m(x_1,x_2,…,x_n) = 0 \end{cases} $$ 解法步骤
构造辅助函数 $$ F(x_1,…,x_n,\lambda_1,…,\lambda_m) $$ 令偏导等于零 $$ \begin{cases} \frac{\partial F}{\partial x} = 0 \\ g = 0 \end{cases} $$ 解出该方程组,即可得到所有的极值点
构造辅助函数
$$ F(n_1,n_2,…,n_i,\alpha,\beta) = \\ \ln \left(\frac{N!}{\prod_i n_i!} \right) + \alpha \left(\sum _i n_i-N\right) + \beta \left(\sum_i\varepsilon_i n_i-U \right) $$ 对常数项进行整理 $$ \begin{aligned} F &= \ln \left(\frac{N!}{\prod_i n_i!} \right) + \alpha \left(\sum _i n_i-N\right) + \beta \left(\sum_i\varepsilon_i n_i-U \right) \\ &=\ln N! - \alpha N - \beta U - \sum_i \left(\ln n_i! - \alpha n_i - \beta \varepsilon_i n_i \right) \end{aligned} $$
使用斯特林公式近似$\ln N! = N\ln N - N$
$$ \begin{aligned} \ln N ! & =\sum_{i=1}^{N} \ln i \\ & \approx \int_{1}^{N} \ln x \mathrm{d} x \\ & =(x \ln x) \vert_1^{N} - x \vert_{1} ^{N} \\ & =N \ln N-N+1 \\ & \approx N \ln N-N \end{aligned} $$
得 $$ F = \ln N! - \alpha N - \beta U - \sum_i \left(n_i\ln n_i - n_i - \alpha n_i - \beta \varepsilon_i n_i \right) $$
对$n_i$对偏导,其余项同理 $$ \frac{\partial F}{\partial n_i} = -(\ln n_i - \alpha - \beta \varepsilon_i) $$ 即可得 $$ \begin{aligned} &\color{red}{\mathcal{A}:\quad\ln n_i^* = \alpha + \beta \varepsilon_i} \\ &\color{red}{\mathcal{B}:\quad n_i^* = e^{\alpha + \beta \varepsilon_i}} \end{aligned} $$ 最概然分布: $$ \begin{align} 能级: \quad & \varepsilon_1 \quad & \varepsilon_2 \quad & \dots\quad & \varepsilon_i \\ 分布方式: \quad & n_1^* \quad & n_2^* \quad &\dots \quad & n_i^* \end{align} $$
α的推导
根据 $$ \sum_i n_i^* = N $$ 由$\mathcal{B}:n_i^* = e^{\alpha + \beta \varepsilon_i}$可得 $$ N = \sum_i e^{\alpha+\beta \varepsilon_i} = e^\alpha \sum_i e^{\beta \varepsilon_i} $$ 则 $$ \begin{align} &\color{red}{\mathcal{C}:\quad e^\alpha = \frac{N}{\sum_i e^{\beta \varepsilon_i}}} \\ &\color{red}{\mathcal{D}:\quad \alpha = \ln N - \ln \left(\sum_i e^{\beta \varepsilon_i} \right)} \end{align} $$ 将$\alpha$代入$\mathcal{B}:n_i^* = e^{\alpha + \beta \varepsilon_i}$ $$ \color{red} {\mathcal{E}:\quad n_i^* = \frac{N e^{\beta \varepsilon_{i}}}{\sum_{i} e^{\beta \varepsilon_{i}}}} $$
β的推导
根据 $$ \begin{array}{l} S=k \ln \Omega=k \ln t_{m} \\ \ln t=N \ln N-\sum n_{i} \ln n_{i} \end{array} $$ 即 $$ S=k\left[N \ln N-\sum n_{i}^* \ln n_{i}^* \right] $$ 代入$\mathcal{A}:\ln n_i^* = \alpha + \beta \varepsilon_i$ $$ \begin{align} S&=k\left[N \ln N-\sum n_{i}^* (\alpha + \beta \varepsilon_i)\right] \\ &=k\left[N \ln N-\alpha\sum n_{i}^* - \beta \sum n_{i}^* \varepsilon_i\right] \end{align} $$ 根据$\sum n_{i}^* =N$和$\sum \varepsilon_i n_{i}^* =U$得 $$ S = k\left[N \ln N-\alpha N - \beta U\right] $$ 代入$\alpha$的表达式$\mathcal{D}: \alpha = \ln N - \ln \left(\sum_i e^{\beta \varepsilon_i} \right)$得 $$ \color{red}{\mathcal{F}:\quad S = k\left[N\ln \left(\sum_i e^{\beta \varepsilon_i}\right) - \beta U\right]} $$
联系之前的热力学公式
复合函数求导: $$ f(x,g(x,y)) \ \frac{\partial f}{\partial x} = \left(\frac{\partial f}{\partial x}\right)_y + \left(\frac{\partial f}{\partial g}\right)_x \left(\frac{\partial g}{\partial x}\right)_y $$
由上面的推导可得熵$S$是$(N,U,\beta)$的函数,而在热力学定义中熵$S$是$(N,U,V)$的状态函数。
由于总粒子数目$N$恒定,我们可以把统计推导得到的熵看做是$S[N,U,\beta(U,V)]$的复合函数,求偏导得:
$$ \left(\frac{\partial S}{\partial U}\right)_{V, N} = \left( \frac{\partial S} {\partial U} \right) _{\beta, N} + \left(\frac{\partial S}{\partial \beta}\right) _{U, N}\left(\frac{\partial \beta}{\partial U}\right) _{V, N} $$
其中利用上述推导结论$\mathcal{F}$可求得
$$ \begin{align} \left(\frac{\partial S}{\partial \beta}\right) _{U, N} &= \frac{\partial\left \lbrace k\left[N\ln \left(\sum_i e^{\beta \varepsilon_i}\right) - \beta U\right]\right \rbrace }{\partial \beta} \\ &= k\left(N \frac{\sum _i \varepsilon _{i} e^{\beta \varepsilon _{i}}} {\sum _i e^{\beta \varepsilon _{i}}} -U \right) \end{align} $$
由$\mathcal{C}$ 可简化为
$$ \begin{align} \left(\frac{\partial S}{\partial \beta}\right) _{U, N} &= k\left(e^\alpha\sum _{i} \varepsilon _{i} e^{\beta \varepsilon {i}} - U\right) \\ &= k\left(\sum _{i} \varepsilon _{i} e^{\alpha+\beta \varepsilon _{i}}-U\right) \end{align} $$
由$\mathcal{B}$ 可简化为
$$ \left(\frac{\partial S}{\partial \beta}\right) _{U, N} =k\left( \sum _{i} \varepsilon _{i} n _i^*-U \right) $$
其中$\sum \varepsilon_i n_{i}^{*}=U$得
$$ \left(\frac{\partial S}{\partial \beta}\right)_{U, N} = 0 $$
因此
$$ \left(\frac{\partial S}{\partial U}\right) _{V, N}=\left(\frac{\partial S}{\partial U}\right) _{\beta, N} $$
由热力学公式
$$ \mathrm d U = T \mathrm d S - p \mathrm d V $$
得
$$ \left(\frac{\partial S}{\partial U}\right) _{V, N} = \frac{1}{T} $$
由上述推导结论$\mathcal{F}$得
$$ \begin{align} \left(\frac{\partial S}{\partial U}\right)_{\beta, N} &= \frac{\partial \left\lbrace k \left[ N\ln \left( \sum _i e^{\beta \varepsilon _i}\right) - \beta U\right]\right\rbrace}{\partial U} \\ &= -k \beta \end{align} $$
则 $$ \begin{align} \frac{1}{T} = -k \beta \\ \color{red}{\mathcal{G}:\quad\beta \ = -\frac{1}{kT}} \end{align} $$ 由此代入$\mathcal{E}$可推导得出不考虑简并度时的玻尔兹曼统计最概然分布公式: $$ \color{red} {\Large n_i^* = \frac{N e^{- \varepsilon_{i}/kT}}{\sum_{i} e^{- \varepsilon_{i}/kT}}} $$